Inflammatory Effects of Phthalates in Neonatal Neutrophils

ANNA M. VETRANO, DEBRA L. LASKIN, FAITH ARCHER, KIRIN SYED, JOSHUA P. GRAY, JEFFREY D. LASKIN, NKIRU NWEBUBE, AND BARRY WEINBERGER

Departments of Pediatrics [A.M.V., F.A., K.S., N.N., B.W.] and Environmental and Occupational Medicine [J.D.L.], University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901; Department of Pharmacology and Toxicology [D.L.L.], Rutgers University, Piscataway, New Jersey 08854; US Coast Guard Academy [J.P.G.], New London, Connecticut 06320

ABSTRACT: Hospitalized infants are exposed to numerous devices containing the plasticizer di-(2-ethylhexyl) phthalate. Urinary levels of the phthalate metabolite, mono-(2-ethylhexyl) phthalate (MEHP), are markedly elevated in premature infants. Phthalates inactivate peroxisome proliferator-activated receptor-γ (PPAR-γ), a nuclear transcription factor that mediates the resolution of inflammation, a process impaired in neonates. We speculate that this increases their susceptibility to MEHP, and this was analyzed. MEHP inhibited neutrophil apoptosis; neonatal cells were more sensitive than adult cells. In neonatal, but not in adult neutrophils, MEHP also inhibited chemotaxis, stimulated oxidative metabolism, and up-regulated expression of NADPH oxidase-1. In both adult and neonatal neutrophils, MEHP stimulated IL-1β and VEGF production, whereas IL-8 production was stimulated only in adult cells. In contrast, MEHP-inhibited production of MIP-1β by adult cells, and Regulated on Activation Normal T Cell Expressed and Secreted (RANTES) by neonatal neutrophils. The effects of MEHP on apoptosis and oxidative metabolism in neonatal cells were reversed by the PPAR-γ agonist, troglitazone. Whereas troglitazone had no effect on MEHP-induced alterations in inflammatory protein or chemokine production, constitutive IL-8 and MIP-1β production was reduced in adult neutrophils, and RANTES and MIP-1β in neonatal cells. These findings suggest that neonatal neutrophils are more sensitive to phthalate-mediated inhibition of PPAR-γ, which may be related to decreased anti-inflammatory signaling. (Pediatr Res 68: 134–139, 2010)

D i-(2-ethylhexyl) phthalate (DEHP) is the only plasticizer approved by the US Food and Drug Administration for medical use. Consequently, most polyvinyl chloride (PVC)-rich medical devices contain DEHP. The release of DEHP from PVC occurs at a rate that depends on temperature, storage time, flow rates of solution through tubing, the percentage of DEHP present, and the lipophilic nature of the solution in contact with the PVC plastic (1,2). Because hospitalized infants are administered fluids and medications through DEHP-containing tubing and catheters, their level of exposure to phthalates is significantly greater than any other population. In this regard, urinary metabolites of DEHP, which are indicators of internal exposure to phthalates, are several-fold higher in hospitalized infants than in the general pediatric population (3). Neonates also have reduced renal clearance, which may result in even greater body burden of DEHP. DEHP is rapidly metabolized in blood and tissues to several biologically active metabolites, including mono-(2-ethylhexyl) phthalate (MEHP) (4,5).

In addition to well-documented adverse effects on development and reproduction (6–9), DEHP and its metabolites have been shown to exhibit proinflammatory activity. Thus, DEHP up-regulates CD11b expression on neutrophils (10) and stimulates the release of lysosomal enzymes and IL-1 by mononuclear cells (11,12). Elevated phthalate levels during pregnancy have been reported to cause placental inflammation, increasing the risk of preterm delivery (13). These findings raise particular concerns in hospitalized premature neonates, who are developmentally susceptible to chronic inflammatory diseases such as bronchopulmonary dysplasia and necrotizing enterocolitis (14). The Food and Drug Administration has suggested a potential link between exposure to phthalates and the development of lung disease in premature infants (15,16), and the American Academy of Pediatrics has expressed concern about DEHP exposure in children, calling for further study to quantify exposure, and examine its health effects (17). Toward this goal, these studies compared the effects of MEHP on inflammatory activity, apoptosis, and antioxidant expression in adult and neonatal neutrophils, and the potential role of PPAR-γ on these responses.

MATERIALS AND METHODS

Reagents. DMEM, dextran, N-formyl-methionyl-leucyl-phenylalanine (fMLP), TgT, BSA, and Hanks balanced salt solution (HBSS) were purchased from Sigma Chemical Co. (St. Louis, MO). Ficoll-paque was from GE Healthcare (Piscataway, NJ). Annexin V-APC, 7-actinomycin D (7-AAD), and cytometric bead array flex sets were from BD Biosciences (San Jose, CA). MEHP was from TCI America (Portland, OR) and Amplex Red and horseradish peroxidase from Molecular Probes (Carlsbad, CA).1

Subjects and neutrophil isolation. All studies were approved by the Institutional Review Board of UMDNJ-RWJ Medical School and informed consent obtained. Umbilical cord blood was obtained from healthy term infants (≥37 wk gestation) delivered by elective cesarean section before labor between January 2007 and April 2009. Subjects were excluded with clinical evidence of chorioamnionitis or other perinatal infections (maternal fever, uterine tenderness, or foul-smelling amniotic fluid). Subjects experiencing...
Inflammatory effects of phthalates

RESULTS

Initially, we compared the effects of MEHP on adult and neonatal neutrophil apoptosis. Consistent with previous studies (14), we found that spontaneous apoptosis was reduced in neonatal neutrophils relative to adult cells (Fig. 1). Treatment of both adult and neonatal neutrophils with MEHP inhibited apoptosis, but only at the higher doses of MEHP. The effects of MEHP (500 µM) on apoptosis were significantly greater in neonatal, relative to adult cells. Phthalates have been reported to bind PPAR-γ, inhibiting the activity of this anti-inflammatory signaling molecule (23). To analyze the role of PPAR-γ in MEHP-induced suppression of apoptosis, we used the PPAR-γ agonist, TgT (24). TgT was found to reverse the suppressive effects of MEHP on apoptosis in both adult and neonatal neutrophils. Interestingly, TgT by itself stimulated apoptosis, but only in adult cells. We next compared the effects of MEHP on chemotaxis in adult and neonatal neutrophils. The bacterially-derived peptide fMLP readily induced chemotaxis in both cell types; in accord with previous studies (25), cells from adults were more responsive than cells from neonates (Fig. 2). Pretreatment of adult neutrophils with MEHP resulted in a significant increase in fMLP-induced chemotaxis. In contrast, MEHP inhibited this activity in neonatal neutrophils. MEHP by itself had no effect on random migration in either cell type. The PPAR-γ agonist, TgT, reduced fMLP-induced chemotaxis in both control and MEHP-treated adult neutrophils, but had no significant effects on neonatal cells.

In further studies, we compared the effects of MEHP on production of H₂O₂ by adult and neonatal neutrophils. In the absence of stimulation, the rate of H₂O₂ production was two times greater in neonatal, relative to adult neutrophils (Fig. 3). Moreover, after 30 min, neonatal cells produced 1.7 times more H₂O₂ than adult cells. MEHP significantly increased
Figure 3. MEHP stimulates hydrogen peroxide production by neonatal neutrophils. Adult (panel A) and neonatal (panel B) neutrophils (5 × 10⁴ cells/well) were incubated with Amplex Red (25 μM) and horseradish peroxidise, in the absence or presence of MEHP (500 μM), and TgT or control. H₂O₂ production was quantified at 1 min intervals for 30 min. Each point represents the mean ± SE (n = 6). MEHP significantly increased H₂O₂ production in neonatal cells at times >13 min with no effect on adult cells; TgT significantly attenuated this response in control and MEHP-treated neonatal cells at all time points. Control, ●; MEHP, ○; TgT, ▼; TgT + MEHP, △.

Figure 4. Effects of MEHP on expression of NOX1, SOD, and catalase in neutrophils. Adult (■) and neonatal (□) neutrophils were incubated with MEHP (500 μM), or medium control (Ctl) for 4 h. mRNA expression of the (A) NOX1, (B) SOD, and (C) catalase genes were quantified by real-time PCR. Results were normalized to GAPDH expression. Each bar represents the mean ± SE (n = 15). *Significantly different (p < 0.05) from adult; †Significantly different (p < 0.05) from Ctl.

Figure 5. Effects of MEHP on inflammatory mediator production. Adult (■) and neonatal (□) neutrophils were incubated in the presence or absence of MEHP (500 μM) and/or TgT (10 μM) for 24 h. The inflammatory mediators (A) IL-8, (B) IL-1β, (C) RANTES, (D) IL-6, (E) MIP-1β, and (F) VEGF were measured in culture supernatants using cytomeric bead array analysis. Each bar represents the mean ± SE (n = 10). *Significantly different (p < 0.05) from adult; †Significantly different (p < 0.05) from control; ‡Significantly different from MEHP.
both the rate (1.8 fold) and total amount (1.3 fold) of H$_2$O$_2$ produced by neonatal, but not adult neutrophils. TgT suppressed both basal and MEHP-induced H$_2$O$_2$ production by neonatal cells, with no effect on adult neutrophils. Consistent with these results, MEHP was found to up-regulate mRNA expression of NOX1, which catalyzes the production of superoxide anion, in neutrophils from neonates, but not adults (Fig. 4). However, basal levels of NOX1 were greater in adult cells.

In our next series of studies, we compared the effects of MEHP on mRNA expression of SOD and catalase, which are known to play a role in protecting against cytotoxicity and tissue damage (26). Constitutive mRNA expression of both antioxidants was greater in neonatal, when compared with adult neutrophils (Fig. 4). Treatment with MEHP had no effect on expression of these antioxidants in either cell type.

We also analyzed the effects of MEHP on neutrophil production of inflammatory proteins and chemotactic cytokines. Constitutive production of IL-1β, VEGF, IL-6, IL-8, MIP-1β, and RANTES was significantly reduced in neonatal, when compared with adult neutrophils (Fig. 5). MEHP stimulates IL-1β and VEGF production by both cell types. MEHP also stimulated IL-8 production, but only in adult neutrophils. In contrast, MEHP-inhibited MIP-1β production by adult neutrophils, and RANTES production by neonatal cells. No significant effects of MEHP were noted on IL-6 production in either cell type. Although TgT had no effect on MEHP-induced alterations in inflammatory protein or chemokine production in either cell type, changes were noted in constitutive production. Thus, TgT by itself reduced IL-8 and MIP-1β production by adult cells, and RANTES and MIP-1β by neonatal neutrophils. In contrast, TgT stimulated VEGF production, but only in neonatal cells.

DISCUSSION

Exposure of hospitalized newborns to phthalates is a major health concern because large quantities are infused i.v. with procedures such as blood transfusions (27–29). DEHP exposure may also occur via mechanical ventilator tubes and lipid infusions, resulting in exposures more than three orders of magnitude higher in neonates relative to nonhospitalized infants and children (30–32). We hypothesized that MEHP exerts proinflammatory activity in neutrophils, and that this may increase susceptibility to chronic diseases. To test this, we compared the effects of MEHP on inflammatory activity of adult and neonatal neutrophils. Because serum phthalate levels in hospitalized neonates have not been reported, MEHP concentrations used in this study were calculated based on measurements in adults after prolonged exposure. Platelet apheresis can provide up to approximately 2 mg of DEHP (33). Extrapolating to a continuous i.v. infusion in a 1-kg infant with a blood volume of 100 mL, and assuming rapid metabolism to MEHP, this would yield a serum concentration of approximately 1 mM. Although the rate of metabolism of MEHP in neonates is not known, it has a half-life of 6.3 h in mature animals (34). Therefore, doses of 100 to 500 μM are expected to be within the magnitude of levels to which neutrophils may be exposed in the blood of neonates receiving intensive care.

Increased susceptibility of newborns to bronchopulmonary dysplasia and other inflammatory diseases is thought to be due to impaired resolution of inflammation and clearance of neutrophils by apoptosis (35,36). Consistent with this, we have previously reported that apoptosis is reduced in neonatal neutrophils relative to adult cells; moreover, this is related to decreased responsiveness to Fas ligand and anti-inflammatory eicosanoids (14). Findings in these studies that MEHP suppresses apoptosis, and that this effect is greater in neonatal, compared with adult neutrophils, suggest that exposure of neonates to phthalates may further impair the clearance of neutrophils, exacerbating inflammatory conditions in these patients.

Neutrophils accumulate in tissues in response to chemokines generated at sites of infection or injury. IL-8 is a potent neutrophil chemoattractant; it also up-regulates expression of cell adhesion molecules (37). The present studies demonstrate that MEHP augmented fMLP-induced chemotaxis in adult, but not neonatal cells. This correlated with increased production of IL-8 by adult neutrophils. MEHP has also been shown to induce calcium flux and up-regulate expression of the integrin, CD11b, which are important in cell motility (10,38). It has previously been reported that calcium mobilization and expression of CD11b are developmentally impaired in neonatal neutrophils (25,39). These defects, together with the inability of MEHP to stimulate IL-8 production in neonatal cells, may contribute to the inhibitory effects of MEHP on chemotactic responses in these cells.

Inflammatory cytokines and bacterial-derived products trigger the generation of reactive oxygen species (40). The present studies show that both adult and neonatal neutrophils constitutively generate significant quantities of H$_2$O$_2$. However, the rate of production and total amount of H$_2$O$_2$ generated were greater in neonatal cells, which is consistent with our previous observations (18). MEHP was found to stimulate H$_2$O$_2$ production by neonatal, but not adult neutrophils. These findings are in accord with reports that phthalates induce oxidative metabolism in neonatal neutrophils (41). We also found that MEHP up-regulated NOX1 expression, but only in neonatal cells. NOX1 is the major enzymatic mediator of superoxide anion generation in neutrophils (42). Increased expression of NOX1 by neonatal neutrophils is consistent with previous reports that in response to inflammatory stimuli, these cells produce greater amounts of superoxide anion relative to adult cells (43). Of note is our observation that constitutive expression of NOX1 was lower in neonatal relative to adult cells. These findings are in accord with reports that constitutive production of superoxide anion is low or undetectable in these cells (44). Interestingly, constitutive expression of SOD and catalase was elevated in neonatal neutrophils, when compared with adult cells, which supports the idea that these antioxidants are key to protecting neonates from reactive oxygen species generated in fetal and maternal circulation (45). In contrast to its stimulatory effects on NOX1 and oxidative metabolism in neonatal neutrophils, MEHP had no effect on expression of SOD or catalase. MEHP-induced increases in NOX1 and production of reactive oxygen species occur in the
absence of increases in antioxidant production. Consistent with the idea that oxidative activity is increased in neonates, the proportion of phthalates excreted as mono (2-ethyl-5-carboxypentyl) phthalate, an oxidative metabolite of DEHP, is markedly increased in neonates when compared with adults (31). Increased reactive oxygen species may also contribute to increased susceptibility of neonates to oxidant-induced tissue injury, characterized by sustained inflammation leading to cytotoxicity, apoptosis, and fibrosis.

Additional comparative studies revealed that constitutive production of IL-1β, IL-6, IL-8, MIP-1β, RANTES, and VEGF was significantly reduced in neonatal neutrophils when compared with adult cells. These findings are in accord with previous reports that the generation of cytokines and chemokines is developmentally impaired in neonatal cells (46). Whereas in adult neutrophils, MEHP suppressed the production of MIP-1β, in neonatal cells, it suppressed RANTES production. MIP-1β and RANTES are CC chemokines that act primarily on monocytes and macrophages (47). Downregulation of these mediators by MEHP suggests that the proinflammatory effects of MEHP are mainly directed toward neutrophils. This is supported by our findings that MEHP stimulated IL-8 production in adult cells. The fact that this was not evident in neonatal cells is in accord with our findings that MEHP blocks chemotaxis in these cells. MEHP was also found to up-regulate IL-1β and VEGF production in both cell types. IL-1β is a marker of neutrophil activation during chronic inflammatory disease (48), and VEGF has been shown to mediate neutrophil adhesion and migration (49). Increased production of these mediators may represent an important mechanism contributing to MEHP-induced neutrophil inflammation in both adults and neonates.

PPAR-γ is a nuclear transcription factor important in downregulating the production of pro-inflammatory cytokines and reactive nitrogen species during the resolution phase of inflammation (50). PPAR-γ agonists have been shown to reduce neutrophil-mediated lung and liver injury during endotoxemia (51). Previous studies have shown that phthalates bind to PPAR-γ, suppressing its activity (23). The PPAR-γ agonist TgT attenuated MEHP-mediated suppression of apoptosis and stimulation of oxidative metabolism by neonatal neutrophils. These data suggest that MEHP modulates these activities in neonates by inhibiting anti-inflammatory signaling via PPAR-γ. In contrast, TgT had no effect on MEHP-induced alterations in production of inflammatory proteins or chemokines by adult or neonatal neutrophils, indicating that these effects are mediated by PPAR-γ-independent pathways. Interestingly, TgT suppressed the effects of MEHP on chemotaxis in adult neutrophils, suggesting that the role of PPAR-γ signaling in chemotaxis is developmentally regulated. Developmental alterations in PPAR-γ signaling are also supported by our observation that adult and neonatal neutrophils display differential sensitivity to the effects of TgT alone. For example, TgT stimulated apoptosis and inhibited IL-8 production in adult, but not neonatal cells. It may be that PPAR-γ plays a role in regulating neutrophil longevity and migration in adult neutrophils, and that these pathways are impaired in neonatal cells. It has been reported that prostaglandin J2 and other eicosanoids may be endogenous ligands for PPAR-γ, but the role of these mediators in neonatal disease is not known (52,53).

Clinical case reports indicate that phthalates may contribute to neonatal inflammatory disease. For example, high levels of DEHP have been reported in the gastrointestinal tissue of infants who succumbed to necrotizing enterocolitis (54), and phthalate exposure has been implicated in chronic lung disease in premature infants (55). The present studies demonstrate that MEHP induces oxidative metabolism and up-regulates expression of NOX1 in neonatal neutrophils. This is associated with reduced apoptosis and chemotaxis. Taken together, these data suggest that neonatal neutrophils are more sensitive to phthalate-mediated inhibition of PPAR-γ signaling, which may be related to decreased basal anti-inflammatory signaling via this pathway. Understanding the inflammatory effects of phthalates in neonates may support efforts to limit or discontinue the use of phthalate-containing medical devices in neonates.

REFERENCES

12. Bally MB, Opheim DJ, Shertzer HG 1980 Di(2-ethylhexyl) phthalate enhances the release of lysosomal enzymes from alveolar macrophages during phagocytosis. Toxicology 18:49–60
15. Cafalet AM, McKee RH 2006 Integrating biomonitoring exposure data into the risk assessment process: phthalates (diethyl phthalate and di(2-ethylhexyl)phthalate) as a case study. Environ Health Perspect 114:1783–1789
34. Ljungvall K, Tienpont B, David F, Magnusson U, Torneke K 2004 Kinetics of orally
33. Koch HM, Angerer J, Drexler H, Eckstein R, Weisbach V 2005 Di(2-
32. Plonait SL, Nau H, Maier RF, Wittfoht W, Obladen M 1993 Exposure of newborn
24. Naito Y, Yoshikawa T 2004 Thiazolidinediones: a new class of drugs for the therapy
23. Hurst CH, Waxman DJ 2003 Activation of PPARalpha and PPARgamma by
20. Boyden S 1962 The chemotactic effect of mixtures of antibody and antigen on
19. Ferrante A, Thong YH 1980 Optimal conditions for simultaneous purification of
18. Boyden S 1959 The chemotaxis effect of mixtures of antibody and antigen on
17. Ferrante A, Thong YH 1979 Optimal conditions for simultaneous purification of
13. Collin M, Patel NS, Dugo L, Thiemermann C 2004 Role of peroxisome proliferator-
12. Lambeth JD, Kawahara T, Diebold B 2007 Regulation of Nox and Duox enzymatic